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A HYBRID k-& TURBULENCE MODEL OF 
RECIRCULATING FLOW 
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SUMMARY 
This investigation deals with the modification of streamline curvature effects in the k--E turbulence model for 
the case of recirculating flows. Based upon an idea that the modification of curvature effects in C, should not 
be made in regions where the streamline curvature is small, a hybrid k--E model extended from the 
modification originally proposed by Srinivasan and Mongia is developed. A satisfactory agreement of model 
predictions with experimental data reveals that the hybrid k--E model can perform better simulation of 
recirculating turbulent flows. 
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1.  INTRODUCTION 

The internal flow field in some engineering practices is highly turbulent and recirculating. 
Unfortunately, turbulence is one of the unsolved problems of today in the physical sciences. Many 
turbulence models incorporating phenomenological assumptions have been developed for the 
simulation of recirculating turbulent flows. The degree of success of a turbulence model depends 
on the nature and accuracy of the phenomenological assumption(s). 

Turbulence models can be categorized in several ways. The following method is one often used 
in engineering practice. 

(1 )  turbulence-viscosity models in which the length scale of turbulence is found by way of 

(2) turbulence-viscosity models in which the length scale of turbulence is found from partial 

(3) models in which the shear stress itself is the dependent variable of a partial differential 

These models have been described in several excellent review papers, e.g. References 1 and 2. Zero- 
and one-equation models have been successful in predicting simple flows but not in predicting 
complex flows such as flows with recirculation. Two-equation models, which still employ the 
Boussinesq eddy viscosity concept but are more complex than the aforementioned turbulence 
models, have since been used in many applications of engineering practice. Among the two- 
equation models, the k--E model has been the most successful so far. However, it was found3 that 
predictions using the k--E model for flows with significant streamline curvature are only 
qualitatively correct. An attractive alternative is the use of higher-order models such as the 
algebraic stress model or  the Reynolds stress model. In highly swirling and recirculating flows the 

algebraic formulae (or zero-equation models) 

differential equations of transport (one- or two-equation models) 

conservation equation (stress equation models). 
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improvement of flow field predictions using the algebraic stress model is not so pronounced in 
comparison with that using the k--E model. For such flows the Reynolds stress model can, to some 
extent, improve the predictions of flow fields, but it greatly increases the computational 
complexity and time requirement. Furthermore, the fact remains that as the order of the 
turbulence model is increased, so the number of empirical parameters increases, and insufficient 
model validations lead to less generality of those empirical parameters in applications. From the 
engineer’s point of view, a general method for predicting flow fields must comprise both a physical 
model which reflects the true nature of the flow, and an efficient mathematical apparatus which 
permits accurate and economical calculations. It is thus not clear whether higher-order models are 
more valuable than the k--E model. For this reason the present study focuses on the k--E model. It is 
known that both recirculating and swirling flows can generate significant streamline curvature. 
However, since swirling flows may possess spiral and recirculating motion simultaneously, which 
is a more complex phenomenon than purely recirculating flow, recirculating flows without swirl 
are therefore selected as the test problem here. However, the extension of this work to swirling flow 
will be examined later in another study. 

In recognition of the less agreeable predictions of recirculating flow with the k--E model, many 
modifications to the k--E model have been developed. The one developed by Srinivasan and 
Mongia4 was reported to be able to yield better predictions in the recirculation zone of the flow 
field and is therefore used for this study. The objective of the paper is first to investigate both 
improvements and drawbacks with the selected modified k--E model and then to present a hybrid 
k--E model which will give better predictions of flow fields. 

2. MODIFICATION OF CURVATURE EFFECTS TO k-& MODEL 

An extensive review of the effects of streamline curvature on turbulence phenomena as well as 
modelling was given in References 1 and 3. The standard or original k--E model describes the 
turbulence characteristics at any point in the flow field by a single length scale which is obtained 
from a hypothesis of isotropic turbulence structure, and relates the Reynolds stress to the rate of 
strain by two scaling parameters, i.e. the turbulent kinetic energy k and its dissipation rate E, as 

These two parameters are determined by their transport equations. A detailed study of the 
experimental results3 reveals that the turbulence structure near the recirculation zone is quite 
anisotropic. This inference stems from the extra strain rates imposed on the strong recirculation or 
swirl zone, which would tend to increase both the velocity and the length scale of turbulence. 
When significant streamline curvatures are introduced into this kind of flow field, the standard k--E 
model cannot adequately account for the enhanced turbulence diffusion caused by the extra strain 
rates associated with streamline curvature. 

One popular way of accounting for curvature effects is to introduce corrections to the length- 
scale-determining &-equation. The constant C ,  appearing in the &-equation (see Table 1) is 
corrected as a function of the Richardson number, which is a measure of the extra strain rate due 
to streamline curvature. 

Srinivasan and Mongia4 further split the Richardson number into two parts-the swirl 
Richardson number and the curvature Richardson number-and corrected C ,  by 

C ,  = 1.92 exp(2a, Ri, + 2ac Ric). 

The swirl Richardson number Ri, is set to zero for the present case of non-swirling flows, and the 
curvature Richardson number is defined as 
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Table I. Expressions corresponding to equation (4) 

1 0 0 

U Peff - 2 dx + dx ( Peff ;) +; ;( r k f  ;) 

The value of C ,  is suggested to be in the range from 0.1 to 2.4 by Abujelala and Lilley' for swirling 
and recirculating flows. However, the optimum value of a, can be arrived at by parametric studies. 
Srinivasan and Mongia4 claimed that their modification to the k--& model was capable of yielding 
reasonably satisfactory predictions, particularly in the recirculation zone. One major drawback of 
this modified k--E model is that it overlooks the fact that the standard k--E model works quite 
successfully for predictions of simple flows, and even simple flows possess some inherent 
streamline curvature albeit of smaller magnitude than in complex flows. We observe that a hybrid 
model, which permits the standard k--E model to work in the small-streamline-curvature 
flow regions while allowing the modification to curvature effects in the turbulence model to work 
in the high-streamline-curvature flow regions, is expected to perform a better job than other 
modification methods. 

3. NUMERICAL SOLUTION PROCEDURE 

Calculation of the recirculating flow field in a sudden-expansion duct requires the simultaneous 
solution of the governing equations. The transport equations representing the conservation of 
mass, momentum, turbulent kinetic energy and its dissipation rate are cast into a general form of 
steady state and axisymmetric cylindrical co-ordinates: 

where 4 is a general dependent variable. The corresponding expressions of T, and S ,  are given in 
Table I. 

The finite volume method incorporated with the power-law scheme and SIMPLER algorithm6 
was employed to obtain the numerical solutions of the partial differential equations represented in 
the form of equation (4). The simultaneous and non-linear nature of the governing equations 



372 K. C. CHANG, C. S. CHEN AND C. I. UANG 

necessitates that special measures should be used to procure numerical stability (convergence). 
The commonly used measure is the successive underrelaxation method. The values of the 
underrelaxation factors were chosen from 0.5 to 1.0. There is no need to maintain the same value of 
the underrelaxation factor during the entire computation. The optimal value for the initial 
underrelaxation factor can only be found by experience and from numerical experiments for a 
given problem. The convergence criterion adopted in the present calculations was that the 
summation of the absolute values of the mass residual in the entire computational domain be less 
than The wall function treatment employed in the CHAMPION computer code7 (see 
Appendix I )  was introduced to bridge the wall layer to the fully turbulent region. The grid lay-out 
used for the calculation domain consisted of 36 x 28 non-uniformly distributed nodes, with a 
dense grid line concentration in the recirculation zone. Numerical tests showed that this non- 
uniform grid lay-out produced a nearly mesh-independent solution (with less than 0.1 % change in 
reattachment length). 

4. RESULTS AND DISCUSSION 

Chaturvedi's experimental results* were first selected as the comparison basis for this study. The 
configuration of the sudden-expansion duct is sketched in Figure 1, with dimensions of 
L= 2642 mm, ra = 108 mm and R = 216 mm. The Reynolds number of the mean flow at the inlet 
(r , )  was maintained at approximately 2 x 10'. The expansion ratio (EPR), which is defined as 

EPR=R/r,, (5 )  

is 2.0 according to the given geometric configuration. The velocity measurements were made by 
both hot wire anemometer and Pitot tube. A constant velocity distribution with an almost zero 
level of turbulence was established by providing a suitable bellmouth entry. 

No measurements in the inlet region were reported in Chaturvedi's experiments. A uniform 
mean velocity profile was specified at the inlet, and the inlet profiles for k and E were given in the 
following empirical manner: 

kin = 0.003 I&, 

cin =CPk,1,''/003r,. 

Since the computational domain extends to an axial distance of 12.2 diameters of the inner duct, 
the outflow boundary condition is reasonably assumed to be fully developed in the calculation. 

The predictions using the standard k-& model provide a baseline with which to compare 
predictions using other modified k--E models. The predicted distributions of the mean axial 
velocity and the turbulent kinetic energy at  five different sections are shown and compared with 
the measured results of Chaturvedi' in Figure 2. Note that the velocity components and the 

I L V  rrattzchnent location 

I / / / /  / /  / /  / / / /  / 

Figure 1. Schematic view of sudden-expansion duct: (i) recirculation zone; (ii) potential core 
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experimental data' 
- standard k-E model 
--- modified k-E model of Srinivasan and Nongia4 (a) 
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Figure 2. Comparison of predicted and measured' (a) axial velocities and (b) turbulent kinetic energy in test problem 1 

turbulent kinetic energy shown in all figures are in dimensionless form and are non-dimen- 
sionalized by the reference quantities uin and u?" respectively. The contour of the curvature 
Richardson number within the sudden-expansion duct is plotted in Figure 3. The shaded regions 
represent streamlines with slightly negative values (of the order of - of Ri,. The higher 
values of Ri, appear in the recirculation zone, as indicated in Figure 3. The highest value of Ri,  is 
about 0.3. 

4.1. Modlfication proposed by Srinivasan and Mongia4 

Before we apply the modification to the k--E model proposed by Srinivasan and Mongia to the 
test problem, we have to determine the value of a, appearing in equation (2). Figure 4 
demonstrates the change of C, with Ri,  at four values of a,. Here the minimum value of C, is 
limited to 0.1 according to the study of Abujelala and L i l l e ~ . ~  Since C ,  is an exponential function 
of Ri,, the correction of C ,  approaches an asymptotic value when the parameter a, moves to the 
more negative side, as depicted in Figure 4. Srinivasan and Mongia suggested that a, = -2 in their 
r e p ~ r t . ~  Several different values of a, were tried in the present test run, and among those, the best 
comparison with measured data was obtained for a, between - 2 and - 3. For c(, approaching the 
more negative side, C, falls more sharply (see Figure 4), which implies that the flow regions with 
less streamline curvature will be much distorted. The value of a, was therefore selected to be - 2 in 
the following calculations. 

The predicted distributions of the mean axial velocity and the turbulent kinetic energy are also 
presented in Figure 2. A comparison of the predicted results using two k--E models with the 
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reattachment 
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Figure 3. Contour of curvature Richardson number predicted by standard k--E model in test problem 1 
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Figure 4. Changes of C2 versus Ri, at four values of a, 

measurements reveals that improvements using the modified k-E model of Srinivasan and Mongia 
only appear in the upstream regions (i.e. recirculation zone) where Ri, is relatively large. This 
observation was also reported by Srinivasan and M ~ n g i a . ~  However, in the downstream regions 
of the flow field the predicted mean axial velocities using the modified k-& model are much worse 
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( b )  

375 

0 

Figure 5. Comparison of contours of turbulent viscosity predicted by (a) standard k-z model and (b) modified k--E model4 
in test problem 1 

than those using the standard k--E model. This difference can be further highlighted by comparing 
the contours of turbulent viscosity obtained with both k--E models, as shown in Figure 5. The 
turbulent viscosities predicted by the modified k--E model are smaller than those by the standard 
k--E model, particularly in the downstream regions, and this leads to the slow momentum diffusion 
rate along the lateral direction as observed in Figure 2(a). The incorrect predictions of the 
turbulent viscosity distribution would significantly affect the diffusion coefficients of Table I and 
thus result in inaccurate predictions of transport processes in the problem. From this point of 
view, the modification of Srinivasan and Mongia is not capable of providing satisfactory 
predictions of physical phenomena such as momentum, heat and mass transfers in recirculating 
flows. 

4.2. ModiJication by dividing into high- and low-streamline-curvature regions 

It is suggested that the modification made by Srinivasan and Mongia might overcorrect the C1- 
values in areas where Ri, is small, i.e. areas similar to the flow fields of simple flows. This idea can 
be supported by the fact that the empirical coefficient C, = 1.92 was determined by the best 
comparison with experimental observations for most of the simple flow cases. In order to examine 
this idea further, a modification to the approach of Srinivasan and Mongia was made which we 
call Modification 1. 

ModiJication 1. The sudden-expansion duct is split into two computational subdomains as 
demonstrated in Figure 1. One subdomain (the shaded region) with relatively high streamline 
curvature is still simulated by means of the modified k--E model. On the other hand, for those 
regions in which the streamline curvature is small the calculation is done with the standard k--E 
model. These low-streamline-curvature regions (see Figure 3) include two parts: one is located 
downstream where the recirculation zone has disappeared; the other is within the potential core. 
Here the potential core is defined as u/uin 2 0.99. The predicted distributions of the mean axial 
velocity and the turbulent kinetic energy at various sections are presented in Figure 6. A 
comparison of the results presented in Figure 6 and those presented in Figure 2 indicates that 
Modification 1 can sustain the advantage of the modification method proposed by Srinivasan and 
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a 
o experimental data 

standard k-E model 
modified k-c model using modification 1 
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Figure 6. Comparison of predicted and measured" (a) axial velocities and (b) turbulent kinetic energy in test problem 1 

Mongia in the recirculation zone while yielding satisfactory predictions in the downstream 
regions. The success of Modification 1 leads to the following attempts. 

4.3. Modijication using hybrid method 

A hybrid k-& model is developed to fulfil this purpose which we call Modification 2. 
Next we intend to describe the approach of Modification 1 in a more quantitative manner. 

Modijication 2. The correction formula of C,, equation (2), is used when Ri, is larger than a 
certain value, whereas C ,  = 1.92 (the standard k--E model) is used when Ri, is smaller than this 
value. A number of attempts were made to find the best comparison with measurement. The 
following was found to yield satisfactory predictions. 

C, = equation (2) for Ri, 2 0.2, 

C2 = 1.92 for Ri,<0.2. (8) 
Figure 7 shows the predicted results using the modification described in equation (8). It can be 
observed from Figure 7 that this proposed modification indeed improves the flow field predictions 
in the entire computational domain. However, the price to be paid for using the hybrid k--E model 
is approximately 50% more computer effort required to attain the same convergent level in 
comparison with that required by the standard k--E model, and approximately 10% more 
computer effort than that required by the modified k--E model of Srinivasan and Mongia. 
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o experimental data' 
- standard k-E model 

modified k-E model using modification 2 -- - 
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Figure 7. Comparison of predicted and measured* (a) axial velocities and (b) turbulent kinetic energy in test problem 1 

4.4. Comparison of reattachment lengths obtained by various models 

The predicted reattachment lengths are summarized in Table I1 and compared with the 
measurement of Chaturvedi8 The uncertainty in the measured reattachment length which can be 
ascribed to the flow unsteadiness, measurement error and inlet flow quality controlg* lo is reported 
to be as high as 20%. In view of the satisfactory prediction of reattachment length (approximately 
10% error) obtained with the hybrid k--E model (i.e. Modification 2), this fact provides further 
confidence in the proposed hybrid modification. However, it is believed that the accuracy of the 
predicted reattachment length could be further improved if the more sophisticated near-wall 
models' were employed for calculations. 

4.5. Further validation of hybrid k--E model 

Two more test problems were run in order to examine the generality of the developed hybrid 
model. The experimental study of an axisymmetrical sudden-expansion flow conducted by 
Durrett et a1.l' was selected as the second test problem. The dimensions of the configuration are 

Table 11. Comparison of reattachment lengths 
~ ~ ~ ~ ~ ~ ~ _ _ _ _ _ _ _  

Standard Original 
Experiment k-c model modification Modification 1 Modification 2 

2.300 2.230 4 2 4 0  2800 2.540 
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L = 660.8 mm, ra = 25 mm and R = 47.6 mm (i.e. EPR = 1.904). The Reynolds number based upon 
the inlet diameter is equal to 8.4 x lo4. The mean and fluctuating quantities of velocity were 
measured using LDV. The mean velocity profile at the inlet plane (obtained from Pitot tube 
measurements) was very flat. Note that the geometric shape (EPR) and the flow condition (Re) of 
this test problem are similar to those of the previous one. 

Two predicted results using the proposed hybrid model and the standard model respectively are 
plotted in Figure 8 and compared with the measurements of Durrett et ul." Both k--E models 
exhibit an insignificant difference in the prediction of mean axial velocity, but the hybrid model 
yields more satisfactory predictions in the recirculation zone compared to the standard model, as 
shown in Figure 8. The reattachment was found to occur at x / D  2: 2.0, while the predicted lengths 
were 1.9 and 2-3 using the standard and hybrid models respectively, and both predictions are 
within the uncertainty of the measured reattachment location. Since Durrett et al. did not measure 
the tangential turbulent intensity, the experimental data of turbulent kinetic energy, which is 
defined as ( u ' ~  + uf2 + wl2)/2, are not available. However, the measured axial and radial turbulent 
intensities were utilized for comparing the superiority of these two k--E models. Figure 9 compares 
the predicted axial and radial turbulent intensities using the two k--E models with the measure- 
ments. Clearly, the hybrid model improves the predictions in the recirculation zone. 

The third test problem is for the axisymmetric sudden-expansion flow experiment of So and 
Ahmed12 with dimensions L = 508 mm, ra = 21.6 mm and R = 31.75 mm (i.e. EPR = 1.47). The 
velocity measurements were made by LDV and the inlet Reynolds number is 4.6 x lo4. Two 
velocity components along the axial and tangential directions were measured in their work. 
Calculations using the two different k--E models and measurements of u and u' are given in 
Figure 10. In the plot of mean axial velocity (see Figure lqa)) there exist significant discrepancies 
between the predicted and measured profiles in the downstream region. A check for mass 
conservation at each section of measurement reveals that the measured mean axial velocity 
profiles at x / D  = 1.5 and 2.7 yield mass flow rates which are about 12% and 45% respectively 
higher than that at the inlet. Nevertheless, the requirement for mass conservation in the upstream 
region is acceptable. However, Figure 10(a) shows that the hybrid model yields better predictions 
in the recirculation zone in comparison with the standard model, though the improvements are 
not as marked as in the previous two test problems. This can be explained by investigating the 
distribution contour of the curvature Richardson number of this flow. It is found that only a small 
region where Ri, 20.2, comparing with Figure 3 (the case with EPR = 2.0), needs to be corrected in 
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Figure 8. Comparison of predicted and measured' ' axial velocities in test problem 2 
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Figure 9. Comparison of predicted and measured" (a) axial and (b) radial turbulent intensities in test problem 2 

accordance with equation (8). This leads to minor differences occuring between the predictions 
obtained with these two models. 

A comparison of the reattachment lengths reveals that the prediction of the standard k--E model 
is consistently underpredicted (1-OD versus the measurement of 1.20), while the prediction of the 
hybrid model is overpredicted (1.40) but still within the uncertainty allowance. The u'-predictions 
using the two k--E models are underpredicted, particularly in the downstream region, as shown in 
Figure 1qb). Similar results for the u'-predictions were also obtained by Yo0 and Sol3 using the 
full Reynolds stress model. 

5. CONCLUSIONS 

Modifications of streamline curvature effects in the k--E model have been examined and compared 
with corresponding experimental results found in the literature. It was found that the primary 
drawback of the modification made by Srinivasan and Mongia stemmed from the overcorrection 
of C,-values in regions where the streamline curvatures are relatively small. The values of the 
turbulent viscosity are significantly underpredicted, and this will, in turn, result in wrong 
predictions of all transport processes. 

The suggestion was made that for regions in which the streamline curvature is small, the 
modification proposed by Srinivasan and Mongia should not be employed for simulation. Based 



380 K. C. CHANG. C. S. CHEN AND C. I. UANG 
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Figure 10. Comparison of predicted and measured" (a) axial velocities and (b) axial turbulent intensity in test problem 3 

upon this idea, a hybrid k-8 model was developed and expressed as 

C2 = 1.92 exp(2acRi,) for Ric>0.2, 

C2 = 1.92 for Ric<0.2, 

where a, was determined to be -2 in the study. This hybrid model is shown to improve the 
prediction accuracy of recirculating flows in comparison with the standard k--E model and the 
modified model proposed by Srinivasan and Mongia. However, the application of this hybrid 
model to calculations of swirling flows needs to be further investigated. 

APPENDIX I. WALL FUNCTION TREATMENT 

The generation term G, shown in Table I at the grid node P (see Figure 11) is calculated by 

GI, = t,us/Arp. (9) 

t, =0.42r+/ln(9.8r+) for r +  > 15 (10) 

z w  = P u p l r p  for r +  < 15, (1 1) 

The determination of the shear stress at the wall depends upon the location of the grid node P, i.e. 

where 
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Figure 11. Near-wall grid node 

APPENDIX 11. NOMENCLATURE 

turbulence coefficients 
diameter of outer duct 
volumetric rate of generation for k 
turbulent kinetic energy 
length of sudden-expansion duct 
pressure 
near-wall grid node 
radial co-ordinate 
radius of inner duct 
radius of outer duct 
Richardson number 
source term 
mean velocity components corresponding to axial and radial co-ordinates 
respectively 
grid node at wall 
axial co-ordinate 
empirical coefficient 
transport coefficient 
dissipation rate of turbulent kinetic energy 
viscosity 
density 
turbulent diffusion coefficient 
shear stress at wall 
dependent variable 
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Subscripts 

C curvature 
eff effective value 
in inlet 
k turbulent kinetic energy 
S swirl 
E dissipation rate of tubulent kinetic energy 

Superscripts 

+ 
fluctuating quantity 
dimensionless form 

REFERENCES 

1. M. Nallasamy, ‘Turbulence models and their applications to the prediction of internal flows: a review’, Comput. Fluids, 

2. J. H. Feniger, ‘Review: simulation of incompressible turbulent flows’, J. Comput. Phys., 69, 1 4 8  (1987). 
3. P. Bradshaw, ‘Effects of streamline curvature on turbulent flows’, AGARDograph Report No. 169, 1973. 
4. R. Srinivasan and H. C. Mongia, ‘Numerical computation of swirling recirculating flows: final report’, NASA CR- 

5. M. T. Abujelala and D. G. Lilley, ‘Limitations and empirical extensions of the k--E models as applied to turbulent 

6. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980. 
7. W. M. Pun and D. B. Spalding, ‘A general computer program for 2-D elliptic flow’, HTS/76/2,  Imperial College, 

8. M. C. Chaturvedi, ‘Flow characteristics of axisymmetric expansions’, 1. Hydraul. Dio., Proc. ASCE, H Y3,89,61-92 

9. J. E. Drewry, ‘Fluid dynamic characterization of sudden-expansion ramjet combustor flowfields’, AIAA J., 16, 

10. L. F. Moon and G. Rudinger, ‘Velocity distribution in an abruptly expanding circular duct’, J. Fluids Eng., Trans. 
ASME, 99,226-230 (1977). 

11.  R. P. Durrett, W. H. Stevenson and H. D. Thompson, ‘Radial and axial turbulent flow measurements with LDV in an 
axisymmetric sudden expansion air flow’, in A. Dybbs and P. A. Pfund (eds), Proc. Int. Symp. on Loser Anemometry, 
ASME Publication FED-33, 1985, pp. 127-133. 

12. R. M. C. So and S. A. Ahmed, ‘Rotation effects on axisymmetric sudden-expansion flows’, J .  Propulsion Power, 4, 
27G276 (1988). 

13. G. J. Yo0 and R. M. C. So, ‘Variable density effects on axisymmetric sudden-expansion flows’, Int. J. Heat Mass 
Transfer, 32, 105-120 (1989). 

3, 151-194 (1987). 

165196, 1980. 

confined swirling flows’, AIAA Paper 84-0441, 1984. 

London, 1976. 

(1963). 

313-317 (1978). 


